[Total No. of Questions - 9] [Total No. of Printed ges - 4] (2126)

16044(D) - 0 DEC 2016

B. Tech 3rd Semester Examination

Analog Electronics Engineering (NS)

EC-212

Time: 3 Hours

Max. Marks: 100

The candidates shall limit their answers precisely within the answerbook (40 pages) issued to them and no supplementary/continuation sheet will be issued.

- **Note:** (i) Attempt five questions in all, select one question from each section A, B, C, D. Section E is compulsory.
 - (ii) Assume suitable data if necessary.

SECTION - A

- (a) Draw hybrid model of transistor for CE configuration. Find current gain, input impedance, voltage gain and output impedance. (10)
 - (b) Compare the performance of CB, CC and CE amplifiers. Which amplifiers mode is suitable for cascading and why? (10)
- (a) Draw circuit diagram of RC coupled amplifier. Explain its frequency response. Discuss the effect of coupling capacitor on its performance.
 - (b) What are cascade amplifiers? What are the advantages offered by the cascade amplifiers? (10)

SECTION - B

3. (a) Draw the hybrid π model of transistor; explain each of the components used in the model. (5)

- (b) Derive the expression for the short circuit current gain of a common emitter transistor amplifiers as a function of frequency. (10)
- (c) Prove the following:

$$g_{ce} = h_{oe} - g_m h_{re} \tag{5}$$

- (a) Draw the circuit diagram of class A push pull amplifier and explain its principle of operation will proper waveforms.
 - (b) Write short notes on the following.
 - (i) Cross over distortion.
 - (ii) Harmonic distortion. (12)

SECTION - C

- (a) Explain in brief the function of tank circuit in tuned voltage amplifier. Also discuss the effect of changing Q of the coil used in tank circuit on its bandwidth. (10)
 - (b) Draw the circuit diagrams of single and double tuned amplifier and their frequency response. Also explain in brief the advantages of using doubled tuned circuit over a single tuned circuit. (10)
- 6. (a) Differentiate between positive feedback and negative feedback. (4)
 - (b) Discuss the effect of negative feedback on bandwidth.
 (6)
 - (c) How will the input impedance of an amplifier be affected by introduction of (i) voltage series feedback and (ii) current shunt feedback? (10)

[P.T.O.]

(8)

16044

SECTION - D

- (a) Draw the circuit diagram of phase shift oscillator and explain its operation by deriving expression for frequency of oscillation. (10)
 - (b) Draw the circuit diagram of a transistor Hartley oscillator and explain its operation. Determine the frequency of oscillation and oscillation condition for it. (10)
- 8. (a) Explain the action of a zener diode as a voltage regulator. (6)
 - (b) With the help of circuit diagrams, briefly explain how
 - (i) Fixed output voltage three terminal regulator can be used to get a variable regulated output.
 - (ii) A three terminal regulator can be used as a constant current source. (8)
 - (c) Distinguish between a linear regulated power supply and a switched mode power supply.
 (6)

SECTION - E

- 9. (i) What are the main purposes for which a common collector amplifier may be used?
 - (ii) How do you improve the gain of an RC coupled amplifier at low frequency?
 - (iii) Define base spreading resistance.
 - (iv) Why a power amplifier is always preceded by a voltage amplifier?
 - (v) What is the difference between parallel resonance and series resonance?

16044

- (vi) Voltage gain of an amplifier without feedback is 60dB. It decreases to 40dB with feedback. Calculate the feedback factor.
- (vii) Discuss effect of negative feedback on noise.
- (viii) The parameters of a crystal oscillator equivalent circuit are L_s =0.8H, C_s =0.08PF, R_s =5K Ω and C_p =1.0PF. Determine the resonance frequencies f_s and f_p .
- (ix) What are the Barkhausen conditions of oscillations?
- (x) What do you mean by voltage regulation? (2×10=20)